OGRINDO ITB Research Breakthrough: Combination of Surfactant & Titanium Dioxide Nanoparticles, Enhances Oil Recovery in Sandstone Reservoir

Share on linkedin
Share on email
Share on twitter

Innovation in technology Enhanced Oil Recovery (EOR) continues to evolve to address production challenges in mature oil fields. One of the current approaches gaining attention from researchers is the utilization of titanium dioxide (TiO₂) nanoparticles to improve surfactant performance in oil recovery processes, particularly in sandstone formations.

A research team from OGRINDO ITB recently published their latest research findings in a scientific article titled:
“Enhancement of Surfactant Performance via Titanium Dioxide Nanoparticles: Implication for Oil Recovery in Sandstone.”

🌟 What Makes This Research Special?

Surfactant alkyl ethoxy carboxylate (AEC) surfactant is one of the chemical agents commonly used in EOR methods. However, the OGRINDO team went further by exploring how the addition of TiO₂ nanoparticles to AEC could drastically alter the system’s performance. Comprehensive testing was conducted, covering:

  • Interfacial tension
  • Contact angle
  • Zeta potential
  • Coreflooding test

State of the Art

The latest innovation in this research is the evaluation of AEC surfactant performance by adding TiO₂ nanoparticles within a concentration range of 0%–0.05% w/w.

The addition of 0.05% w/w TiO₂ nanoparticles to 1.25% w/w AEC surfactant was able to reduce interfacial tension to a value of 5.85 × 10⁻⁵ mN/m. This excellent performance was also confirmed in the coreflooding test, where oil recovery increased to a maximum value of 59.52%.

This finding highlights the importance of TiO₂ nanoparticle stability in surfactant solutions, which turns out to be the key factor in enhancing oil recovery efficiency.

Figure 1: Contact angles of all tested solutions on the Berea sandstone thin section. Error bars represent the standard deviation of the measurements
Figure 2: Effect of TiO₂ nanoparticle addition to AEC surfactant on interfacial tension (adapted from Megayanti et al. (2023))

Why Is This Important?

This research provides valuable new insights into the development of surfactant- and nanoparticle-based EOR methods. With this approach, it is expected to open new opportunities for improving oil recovery efficiency from sandstone reservoir — especially in fields that have experienced production decline.

This discovery also strengthens OGRINDO’s position as a leading EOR research center in Indonesia, focusing on the development of environmentally friendly, sustainable technologies tailored to national industry needs.

📚 Read the full journal here

🌐 Explore More of Our Flagship Research

Visit the complete list of OGRINDO ITB scientific publications to explore our breakthroughs in Enhanced Oil Recovery, CO₂, hydrogen, and other energy transition technologies: 👉 OGRINDO ITB Scientific Publications

Through research, collaboration, and innovation, OGRINDO ITB is committed to being at the forefront of supporting national and global energy transformation.

Let’s create a smarter and more sustainable energy future — together with OGRINDO.

🙏 Acknowledgement

The researchers express their gratitude to Oil and Gas Recovery for Indonesia (OGRINDO) ITB and the Enhanced Oil Recovery (EOR) ITB for access to the experimental equipment used in this study.