Categories
News Article

Optimization of Enhanced Oil Recovery Using Low Salinity Water and TiO₂ Nanofluid in Sandstone Reservoirs

The application of Enhanced Oil Recovery (EOR) technology continues to be a strategic focus in efforts to increase national oil production, especially in reservoirs that have entered the late stage of their productive life. One EOR method that is currently gaining attention is the use of Low Salinity Water (LSW) as an injection fluid. Several studies have shown that low-salinity brine is able to mobilize residual oil more effectively compared to brine with high salinity.

Recent research indicates that the effectiveness of LSW can be further enhanced through the addition of titanium dioxide (TiO₂) nanoparticles. This study becomes important because experimental data regarding the compatibility and synergistic mechanisms of both in the crude oil–brine–rock (COBR) system are still limited.

Figure 1. Illustration of crude oil–brine–rock (COBR) interaction in the LSW–TiO₂ study.

Why Does Low Salinity Water Become More Effective with TiO₂ Nanoparticle?

Recent laboratory studies investigated crude oil–brine–rock (COBR) interactions within a salinity range of 500–32,000 ppm and TiO₂ concentrations of 0–100 ppm using sample from Berea sandstone. The results show that the addition of TiO₂ into LSW induces significant physicochemical changes, particularly in pH, zeta potential, and contact angle parameters, which directly influence the mechanism of oil detachment from the rock surface.

This combination produces an effective LSW–TiO₂ nanofluid capable of altering the rock wettability toward a more water-wet (wettability alteration). In water-wetconditions, the rock surface is more easily wetted by water, allowing oil that was previously strongly attached to the pore surfaces to move and be produced more efficiently.

Figure 2. Changes in zeta potential (ZP) values at various TiO₂ concentrations and salinity levels.

Implications for EOR

Findings from this study show that the combination of LSW and TiO₂ nanoparticles has significant potential for optimizing the EOR process in sandstonereservoirs. Modifications of interfacial properties—particularly through changes in wettability—emerge as the main mechanism supporting enhanced oil mobilization.

This study also demonstrates that the tested TiO₂ concentrations provide consistent physicochemical responses, opening opportunities for designing more optimal injection fluids to maximize oil recovery.

In addition to offering a fundamental understanding of fluid–rock interactions under low-salinity conditions, the results of this research provide new direction for developing more effective LSW–TiO₂ nanofluid formulations for field applications. Further studies, such as coreflooding,, are planned as the next step to validate the implications of these findings on direct oil recovery improvement.

🔗 Access to the Published Paper

Interested in understanding the mechanisms, experimental data, and complete analysis in greater detail?
The paper can be accessed here.

🤝 Research and Industry Collaboration

OGRINDO ITB welcomes collaboration opportunities for further research and industrial partnerships in the fields of EOR, nanotechnology, and reservoir chemistry.
Contact us at: 📩 info@ogrindoitb.com