Categories
News Article

Four Trapping Mechanisms: How CO₂ Stays Safely Locked Underground

Climate change caused by the increasing CO₂ emissions is a major challenge we face today. To prevent its impact, Carbon Capture and Storage (CCS) emerges as a proven safe solution to store CO₂ deep underground. CCS not only prevents emissions from reaching the atmosphere, but also becomes an essential foundation of Carbon Capture, Utilization, and Storage (CCUS)—a pathway that allows CO₂ emissions to be transformed into valuable opportunities.

Figure 1. General scheme of a CCS project: starting from capturing CO₂ emissions, transportation, to permanent storage beneath the earth’s surface (Ali et al, 2022)

Four CO₂ Trapping Mechanisms
The long-term security of CO₂ storage is ensured by four natural mechanisms that complement each other over time:

  1. Structural Trapping
    CO₂ that moves upward due to density differences will be stopped by the caprock. Since gas density tends to be smaller than oil and water, CO₂ gas will gradually move in a vertical direction. To ensure CO₂ remains trapped within the formation, caprock yang cukup reliable, with extremely low permeability and wettability that favors strong water wet conditions.
  2. Residual Trapping
    A portion of CO₂ is trapped within the rock pores as small immobile bubbles. This mechanism provides long-term storage stability.
  3. Dissolution Trapping
    CO₂ dissolves into formation water and forms a carbonate solution with a density heavier than the other fluids present in the formation, thus tending to sink downward and reducing the risk of CO₂ leakage.
  4. Mineral Trapping
    Dissolved CO₂ reacts with rock minerals (Ca, Mg, Fe) and forms solid carbonate minerals such as calcite or magnesite. This is the most permanent form of storage because CO₂ transforms into new stable rock over thousands of years.

These mechanisms work in layers: structural and residual provide immediate protection, while dissolution and mineral ensure long-term security. Together, they create a multi-layered line of defense that guarantees CO₂ remains safely stored for centuries.

Figure 2. Layered contribution of CO₂ trapping mechanisms that complement each other over time, ensuring storage security across generations.

CCS as the Foundation of CCUS
Understanding these four mechanisms helps us see that CCS is a crucial first step in the journey toward CCUS. Without secure storage, it is difficult to develop large-scale CO₂ utilization. Through CCS, CO₂ is not only safely stored underground, but also opens opportunities for reuse—for example in Enhanced Oil Recovery (EOR) as part of the CCUS solution.

🌱 This Is Just the First Step
In the next episode, we will discuss how CCUS transforms CO₂ from a burden into a valuable resource, driving industrial innovation and accelerating the transition to cleaner energy.
✨ Keep following our article series, and be part of the journey toward a low-carbon future.
📩 Contact us: info@ogrindoitb.com
🌐 Learn more: www.ogrindoitb.com

Reference:
IPCC, 2005: IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz, B., Davidson, O., de Coninck, H.C., Loos, M., and Meyer, L.A. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 442 pp.

Categories
News Article

PVT 300/700 FV EDU: An Educational and Reliable Solution for Industrial-Standard Reservoir Fluid Property Analysis

In the petroleum industry, understanding reservoir fluid characteristics is a crucial step in designing efficient production strategies. To meet this need, PVT 300/700 FV EDU is presented as an educational tool with industrial standards, capable of performing various essential experiments on crude oil, volatile oil, and gas condensate.

Figure 1. PVT 300/700 FV EDU apparatus with a capacity of 300 ml and pressure up to 700 bar

🔎Why Choose PVT 300/700 FV EDU?

PVT 300/700 FV EDU is specifically designed for educational purposes, but it retains analytical capabilities equivalent to our flagship product, PVT FV. The difference lies in the reduced pressure/volume ratio and lower automation level (automatic rotating mechanism, automated pneumatic valves).

🔹 Full Visibility Cell: All analysis processes can be directly observed through a full-capacity visual cell, providing an interactive and in-depth learning experience.

🔹 Multifunctional and Highly Precise: This tool can be used for various essential types of experiments, such as:

  • Constant Compositional Expansion (CCE)
  • Constant Compositional Depletion (CCD)
  • Separator Test
  • Differential Vaporization
  • Fluid Envelop Phase
  • Constant Volume Depletion (CVD)

🎯Measurement Accuracy

PVT 300/700 FV EDU is designed to deliver precise and reliable data, with the following measurement specifications:

  • Pressure: 0,1 bar
  • Temperature: ±0,1°C
  • Liquid deposit: 0,005 ml
  • Bubble/dew point repeatability: ±0,35 bar
  • Resisting corrosive abilities CO₂ and H₂S

⚙️Key Technical Specifications

  • Maximum Pressure: 700 bar
  • Maximum operating temperature: up to 180°C
  • PVT cell volume: 300 ml
  • Visual Volume: 300ml

PVT 300/700 FV EDU is equipped with a digital data acquisition and processing system, calibrated pressure and temperature sensors, as well as automatic valves and a control panel. These features make it ideal for use in academic laboratories, petroleum research centers, and technical training institutions.

🧪 OGRINDO Personnel Are Trained in Operating PVT 300/700 FV EDU

As part of OGRINDO’s commitment to ensuring internal technical competence, our personnel have participated in intensive training for operating the PVT 300/700 FV EDU facilitated by Petroleum Engineering Study Program, Bandung Institute of Technology. This training provided hands-on experience in operating the tool and understanding its application in practical reservoir fluid analysis.

👉 For complete training information click here.

🌟 Innovation in PVT Learning

With PVT 300/700 FV EDU, OGRINDO presents a practical learning tool that bridges theory and real-world application in the oil and gas industry. Gain hands-on experience in observing fluid phases, analyzing PVT properties, and understanding reservoir dynamics comprehensively.

Contact us for a tool demonstration or educational collaboration offer!
📧 Email: info@ogrindoitb.com