Categories
News Article

Dr. Ir. Boni Swadesi, S.T., M.T., IPU: Building Synergy in EOR Research and Innovation with OGRINDO ITB

Dr. Ir. Boni Swadesi, S.T., M.T., IPU – Project Manager of OGRINDO ITB, who plays an active role in strengthening research and collaboration in the field of Enhanced Oil Recovery (EOR).

With more than two decades of experience in petroleum engineering, Dr. Ir. Boni Swadesi, S.T., M.T., IPU is one of the key figures behind the advancement of research and development of Enhanced Oil Recovery (EOR) technology in Indonesia. Currently, she serves as the Project Manager of OGRINDO ITB, coordinating various research projects and strategic collaborations between academia, industry, and research institutions to promote the sustainable application of EOR technology.

🧠 Educational and Scientific Background

Dr. Boni earned her Bachelor’s degree in Petroleum Engineering from UPN “Veteran” Yogyakarta, the university where she now serves as a lecturer and also as the Head of the Petroleum Engineering Department. Her passion for research led her to continue her Master’s and Doctoral studies at the Institut Teknologi Bandung (ITB), both in Petroleum Engineering.
Her research focuses on the integrated surfactant injection mechanism for light oil in sandstone reservoirs, as well as the development of 1D and 2D polymer injection models to evaluate the squeezing and sweeping mechanisms in the EOR process.

⚙️ Professional Contributions and Achievements

As both an academic and practitioner, Dr. Boni is actively involved in various leading research projects at EOR Lab ITB, LAPI ITB, and OGRINDO ITB. Some of the key projects she has led or coordinated include:

  • Field Trial Polymer Injection at the Tanjung Field – Pertamina EP, covering implementation, evaluation, and field monitoring.
  • Chemical EOR Optimization Study for Kaji Semoga Field (PT Medco E&P) and Kenali Asam and Tempino Fields (PT Pertamina EP).
  • Formulation and Development of Micromodel cEOR, a miniature technology for laboratory-scale chemical injection studies that has become one of ITB’s flagship research facilities.

As a productive researcher, Dr. Boni has contributed to numerous scientific publications in both national and international journals, discussing topics such as reservoir fluid behavior, reservoir mechanics, and the development of experimental and numerical models for chemical injection optimization.

Dr. Boni Swadesi presenting her study on surfactant characteristics for light oil in EOR applications in the era of renewable energy.

🤝 Strategic Role at OGRINDO ITB

In her capacity as Project Manager of OGRINDO ITB, Dr. Boni plays a vital role in strengthening OGRINDO’s position as a platform for national energy research and innovation collaboration. She ensures that every research effort does not stop at the laboratory stage but can be implemented in the field to enhance national energy productivity and efficiency.
In addition, Dr. Boni actively fosters strategic partnerships with oil and gas industries such as Pertamina Subholding Upstream and Medco E&P, while also promoting the integration of EOR research with the development technology of Carbon Capture, Utilization, and Storage (CCUS).

🌱 Dedication to Education and Innovation

Amid her busy schedule, Dr. Boni remains committed to mentoring students and young researchers in reservoir engineering and chemical EOR. For her, the success of research is not only measured by technical outcomes but also by the ability to nurture a new generation of competent, ethical, and sustainability-minded energy engineers.

Dr. Boni Swadesi sharing her insights on EOR research and encouraging cross-disciplinary collaboration at academic and energy industry forums.

With a collaborative spirit and strong vision, Dr. Ir. Boni Swadesi, S.T., M.T., IPU stands as a true example that research and innovation can move hand in hand to support national energy independence and strengthen Indonesia’s position in the development of sustainable oil and gas technologies.

Categories
News Article

Micromodel: An Innovative Technology for Optimizing Enhanced Oil Recovery

Amid the challenges of enhanced oil recovery (Enhanced Oil Recovery), laboratory methods capable of visually representing fluid displacement mechanisms have become increasingly crucial. This is where the micromodel emerges as an innovative solution proudly developed by Indonesian researchers.

Micromodel is a two-dimensional laboratory device designed to replicate the pore structure of reservoir rocks, such as sandstone or carbonate rocks. Through a micromodel, the movement of fluids—such as water, oil, surfactants, and polymers—can be observed directly and in real-time.

Comparison of coreflood and micromodel flooding methods in observing fluid flow in reservoir rocks

Most conventional laboratory tests, like coreflooding, have limitations in providing direct visualization of chemical injection mechanisms. Micromodel address this challenge by enabling real-time observation of interfacial tension changes, wettability alteration, and viscosity displacement efficiency at the pore scale.

What Is the Purpose of Using a Micromodel?

Micromodel are used to:

  • Visually analyze the working mechanisms of chemical EOR
  • Evaluate the effectiveness of surfactants or polymers before upscaling to larger tests
  • Design efficient and targeted injection strategies
  • Identify phenomena such as channeling, viscous fingering, and oil entrapment often undetectable in conventional tests

Micromodel of OGRINDO ITB have some advantages:

  • Indigenous Innovation: Designed and developed by skilled local researchers.
  • Fast, Simple, and Cost-Effective: More efficient than coreflooding, in terms of time and cost.
  • Costumized Design: Tailored to match pore characteristics of sandstone or carbonat, even based on actual reservoir data.
  • Real-Time Visualization: Enables direct observation of fluid behavior at the microscopic scale.
  • Supports More Accurate EOR Design: Acts as a bridge between laboratory results and real-field applications.

Fabrication Process of the Micromodel

Fabrication process of micromodel includes the following stages:

Five main stages of micromodel
  1. Reservoir Characterization: Identifying the physical and petrophysical properties of the reservoir rock, such as porosity, permeability, fluid saturation, and geological structure.
  2. Thin Section & Petrography Analysis: Observing ultra-thin rock slices under a microscope to study mineral composition and rock textures.
  3. Rock Digitization: Converting physical rock data into 2D or 3D digital models.
  4. Micromodel Fabrication: Creating the micromodel through pore-pattern design, etching, and assembling materials using techniques such as thermal bonding.
  5. Micromodel Ready to Use: Final stage where micromodel has passed all fabrication and characterization tests, making it ready for EOR experiments such as surfactant or polymer injection or other EOR mechanism.

The key advantage of OGRINDO's micromodel lies in its design flexibility. By incorporating actual geological and petrophysical field data, micromodel can be customized to closely replicate real reservoir conditions. This makes the experimental results more relevant and reliable for supporting technical decisions in the field.

Visualization of oil-wet state in the micromodel

🔬 Micromodel is more than just a testing device—it is a window into a deeper understanding of subsurface fluid behavior. With OGRINDO ITB, let’s create smarter, more efficient, and data-driven EOR solutions.

📞 For more information or collaboration opportunities, contact our team at OGRINDO ITB.